Основные понятия и аксиомы статики Проекция силы на ось Условие равновесия произвольной плоской системы сил Момент силы относительно оси Поступательное движение Метод кинетостатики

Теоретическая механика Сопративление материалов

Теоретическая механика

Основные понятия и аксиомы статики

Введение

Техническая механика — комплексная дисциплина. Она включа­ет три раздела: «Теоретическая механика», «Сопротивление мате­риалов», «Детали машин». «Теоретическая механика» — раздел, в котором излагаются основные законы движения твердых тел и их взаимодействия. В разделе «Сопротивление материалов» изучают­ся основы прочности материалов и методы расчетов элементов кон­струкций на прочность, жесткость и устойчивость под действием внешних сил. В заключительном разделе «Технической механики» «Детали машин» рассматриваются основы конструирования и рас­чета деталей и сборочных единиц общего назначения.

Сопративление материалов Техническая механика Задачи контрольной работы

Дисциплина «Техническая механика» является обще профессио­нальной, обеспечивающей базовые знания при усвоении специальных дисциплин, изучаемых в дальнейшем.

Задачи теоретической механики

Теоретическая механика — наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по отношению к другим телам, в частности к Земле.

Для удобства изучения теоретическую механику подразделяют на статику, кинематику и динамику.

Статика изучает условия равновесия тел под действием сил.

Кинематика рассматривает движение тел как перемещение в пространстве; характеристики тел и причины, вызывающие движе­ние, не рассматриваются.

Динамика изучает движение тел под действием сил.

В отличие от физики теоретическая механика изучает законы движения некоторых абстрактных абсолютно твердых тел: здесь материалы, форма тел существенного значения не имеют. При дви­жении абсолютно твердое тело не деформируется и не разрушается. В случае, когда размерами тела можно пренебречь, тело заменяют материальной точкой. Это упрощение, принятое в теоретической ме­ханике, значительно облегчает решение задач о движении.

 Рис. 1.1

Понятие о силе и системе сил

Сила — это мера механического взаимодействия материальных тел между Рис. 1.1

собой. Взаимодействие характеризуется величиной и на­правлением, т.е. сила есть величина векторная1, характеризующа­яся точкой приложения (А), направлением (линией действия), вели­чиной (модулем) (рис. 1.1). Силу измеряют в ньютонах,

Силы, действующие на тело (или систему тел), делятся на внешние и внутренние. Внешние силы бывают активные и реактивные. Активные силы вызывают переме­щение тела, реактивные стремят­ся противодействовать перемещению тела под действием внешних сил.

Внутренние силы возникают в теле под действием внешних сил.

Совокупность сил, действующих на какое-либо тело, называют системой сил.

Эквивалентная система сил — система сил, действующая так же, как заданная.

Уравновешенной (эквивалентной нулю) системой сил называет­ся такая система, которая, будучи приложенной к телу, не изменяет его состояния.

Систему сил, действующих на тело, можно заменить одной рав­нодействующей, действующей так, как система сил.

Аксиомы статики

В результате обобщения человеческого опыта были установлены общие закономерности механического движения, выраженные в виде законов и теорем. Все теоремы и уравнения статики выводятся из нескольких исходных положений. Эти положения называют аксиомами статики.

Первая аксиома

Под действием уравновешенной системы сил абсолютно твердое тело или материальная точка находятся в равновесии или движутся равномерно и прямолинейно (закон инерции).

Следствие из второй и третьей аксиом

Силу, действующую на твердое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Сила F приложена в точке А. Требуется перенести ее в точку В. Используя третью аксиому, добавим в точке (F’; F”). Образуется уравновешенная по второй аксиоме система сил (F; F”). Убираем ее и получим в точке В силу F", равную заданной F.

Жесткий стержень

На схемах стержни изображают толстой сплошной линией (рис. 1.9).

Стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня. Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи.

Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент наложенными на него связями.

Убираем стержень 1, в этом случае стержень 2 падает вниз. Следовательно, сила от стержня 1 (реакция) направлена вверх. Убираем стержень 2. В этом случае точка Л опускается вниз, отодвигаясь от стены. Следовательно, реакция стержня 2 направлена к стене.

2. Какие силы системы (рис. 1.14) можно убрать, не нарушая механического состояния тела?

Рис.1.14

3. Тела 1 и 2 (рис. 1.15) находятся в равновесии. Можно ли убрать действующие системы сил, если тела абсолютно твердые? Что изменится, если тела реальные, деформируемые?

Плоская система сходящихся сил.

Определение равнодействующей

геометрическим способом

Знать геометрический способ определения равнодействующей системы сил, условия равновесия плоской системы сходящихся сил.

Уметь определять равнодействующую, решать задачи на равновесие в геометрической форме.

Плоская система сходящихся сил

Система сил, линии действия которых пересекаются в одной точке, называется сходящейся (рис. 2.1).

Необходимо определить равнодействующую системы сходящихся сил (F1; F2; F3; …; Fn), n — число сил, входящих в систему.

По следствию из аксиом статики, все силы системы можно переместить вдоль линии действия, и все силы окажутся приложенными в одной точке

Порядок построения многоугольника сил

Вычертить векторы сил заданной системы в некотором масштабе один за другим так, чтобы конец предыдущего вектора со впадал с началом последующего.

Вектор равнодействующей замыкает полученную ломаную линию; он соединяет начало первого вектора с концом последнего и направлен ему навстречу.

При изменении порядка вычерчивания векторов в многоугольнике меняется вид фигуры. На результат порядок вычерчивания не влияет.

Условие равновесия плоской системы сходящихся сил

При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого.

Если плоская система сходящихся сил находится в равновесии, многоугольник сил этой системы должен быть замкнут.

Если в системе три силы, образуется треугольник сил.

Рис. 2.7

2. Из представленных силовых треугольников выберете треугольник, построенный для точки А (рис. 2.8, 2.9).

Рис. 2.8

Шар подвешен на нити и находится в равновесии. Обратить внимание на направление реакции от гладкой опоры и условие равновесия шара (рис. 2.8


Сопротивление материалов