Сопротивление материалов Растяжение и сжатие mПолярный момент инерции сечения mНапряжения и деформации при кручении mДеформации при чистом изгибе mОсобенность расчета валов

Теоретическая механика Сопративление материалов

Особенность расчета валов

Большинство валов испытывают сочетание деформаций изгиба и кручения. Обычно валы — прямые брусья с круглым или кольце­вым сечением. При расчете валов касательные напряжения от дей­ствия поперечных сил не учитывают из-за их незначительности.

Расчеты проводят по опасным поперечным сечениям. При про­странственном нагружении вала пользуются гипотезой независимо­сти действия сил и изгибающие моменты рассматривают в двух взаимно перпендикулярных плоскостях, а суммарный изгибающий момент определяют геометрическим суммированием.

Расчет заклепок на смятие и листов на разрыв. Помимо среза заклепкам и соединяемым листам в конструкции угрожают и иные опасности.

Контрольные вопросы и задания

1. Какое напряженное состояние возникает в поперечном сече­нии вала при совместном действии изгиба и кручения?

2. Напишите условие прочности для расчета вала.

3. Напишите формулы для расчета эквивалентного момента при расчете по гипотезе максимальных касательных напряжений и ги­потезе энергии формоизменения.

4. Как выбирается опасное сечение при расчете вала?

Тема 2.10. Устойчивость сжатых стержней.

Основные положения

Иметь представление об устойчивых и неустойчивых формах равновесия, критической силе и коэффициенте запаса устойчиво­сти, о критическом напряжении, гибкости стержня и предельной гибкости.

Знать условие устойчивости сжатых стержней, формулу Эй­лера и эмпирические формулы для расчета критической силы и кри­тического напряжения.

Понятие об устойчивом и неустойчивом равновесии

Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под действием осевых сжимающих сил изгибаются и теряют равновесие. Такие стержни работают на изгиб и сжатие.

Рис.

Равновесие считают устойчивым, если за счет сил упругости после снятия внешней откло­няющей силы стержень восстановит первоначаль­ную форму (рис. 36.1).

Если упругое тело после отклонения от рав­новесного положения не возвращается к исходно­му состоянию, то говорят, что произошла потеря устойчивости, а равновесие было неустойчивым.

Потерю устойчивости под действием цен­трально приложенной продольной сжимающей си­лы называют продольным изгибом.

На устойчивость равновесия влияет величина сжимающей силы.

Наибольшее значение сжимающей силы, при которой прямоли­нейная форма стержня сохраняет устойчивость, называют критиче­ской силой. Даже при небольшом превышении критического значе­ния силы стержень недопустимо деформируется и разрушается.

Расчет на устойчивость

Расчет на устойчивость заключается в определении допускаемой сжимающей силы и в сравнении с ней силы действующей:

; ; ,

где F — действующая сжимающая сила;

[F] — допускаемая сжимающая сила, обеспечивает некоторый запас устойчивости;

Fкр — критическая сила;

[sy] — допускаемый коэффициент запаса устойчивости.

Обычно для сталей [sy] = l,8 ÷ 3; для чугуна [sy] = 5; для дерева [Sy] ≈ 2,8.

Способы определения критической силы

Расчет по формуле Эйлера

Критические напряжения.

Критическое напряжение — напряжение сжатия, соответствующее критической силе.

Напряжение от сжимающей силы определяется по формуле

,

где σкр — напряжение сжатия, при котором стержень еще устойчив. Корень квадратный из отношения минимального момента инерции сечения к площади поперечного сечения принято называть минимальным радиусом инерции imin:

; .

Тогда формула для расчета критического напряжения перепишется в виде

Расчет критического напряжения по формуле Ф. О. Ясинского для стальных стержней

Таблица 36.1

Материал

σ, МПа

b, МПа

λ0

λпред

Сталь Ст2

Сталь Ст3

Сталь 20, Ст4

Сталь 45

Дюралюмин Д16Т

Сосна, ель

264

310

328

449

406

29,3

0,70

1,14

1,15

1,67

1,83

0,194

60

60

60

52

30

-

105

100

96

85

53

70

Критическое напряжение определяется по формуле σкр = а — bλ. где а и b — коэффициенты, зависящие от материала; их значения представлены в таблице.

На рис. 36.4 представлена зависимость критического напряжения от гибкости стержня.

Сопротивление усталости

Иметь представление об усталости материалов, о кривой усталости и пределе выносливости.

Знать характер усталостных разрушений, факторы, влияющие на сопротивление усталости, основы расчета на прочность при переменном напряжение.

Основные понятия

Многие детали машин работают в условиях переменных во времени напряжений. Так, вращающиеся валы и оси, нагруженные постоянными изгибающими силами, работают при переменных нормальных напряжениях изгиба.

Появление трещин под действием переменных напряжений называют усталостным разрушением.

Усталостью называют процесс накопления повреждений в материале под действием повторно-переменных напряжений.

Характерный вид усталостных разрушений — трещины и часть поверхности блестящая в изломе. Такой характер излома вызван многократным нажатием, зашлифованностью частей детали.

Опыт показывает, что усталостное разрушение происходит при напряжениях ниже предела прочности, а часто и ниже предела текучести.

Способность материала противостоять усталостным разрушениям зависит от времени действия нагрузки и от цикла напряжений. При любой деформации нагружение с симметричным циклом наиболее опасно.

Опытным путем установлено, что существует максимальное напряжение, при котором материал выдерживает, не разрушаясь значительное число циклов.

Наибольшее (максимальное) напряжение цикла, при котором не происходит усталостного разрушения образца из данного материала после любого большого числа циклов, называют пределом выносливости.

Факторы, влияющие на сопротивление усталости

1. Концентрация напряжений. В местах, где имеются резкие изменения размеров, отверстия, резьба, острые углы, возникают большие местные напряжения (концентрация напряжений). В этих местах возникают усталостные трещины, трещины разрастаются, и эо приводит к разрушению детали.

Местные напряжения значительно выше номинальных напряжений, возникающих в гладких деталях.

Влияние концентрации напряжений учитывается коэффициентом Ка.

Ка — эффективный коэффициент концентрации напряжений, зависит от формы поверхности.

2. Размеры детали. В деталях больших размеров возможны внутренняя неоднородность, инородные включения, незаметные микротрещины. Влияние размеров учитывается масштабным фактором Kd.

Kd — масштабный коэффициент, коэффициент влияния абсолютных размеров.


Основные понятия и аксиомы статики