Основные понятия и аксиомы статики Проекция силы на ось Условие равновесия произвольной плоской системы сил Момент силы относительно оси Поступательное движение Метод кинетостатики

Теоретическая механика Сопративление материалов

Простейшие движения твердого тела

Иметь представление о поступательном движении, его особенностях и параметрах, о вращательном движении тела и его параметрах.

Знать формулы для определения параметров поступательного ш вращательного движений тела.

Уметь определять кинематические параметры тела при по­ступательном и вращательном движениях, определять параме­тры любой точки тела.

Поступательное движение

Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2).

При поступательном движении все точки тела движутся одина­ково: скорости и ускорения в каждый момент одинаковы. Поэтому для описания движения тела можно рассматривать движение одной его точки, обычно центра масс.

Поступательное движение может быть прямолинейным и кри­волинейным.

Рис. 11.1

Рис.11.2

Вращательное движение

При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси.

Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

При этом каждая точка движется по окружности, радиус кото­рой равен расстоянию точки до оси вращения. Точки на оси враще­ния не перемещаются.

Для описания вращательного движения тела вокруг непо­движной оси можно использовать только угловые параметры (рис. 11.3):

φ — угол поворота тела, [φ] = рад;

ω — угловая скорость, определяет изменение угла поворота в единицу времени, [ω] = рад/с.

Рис. 11.3

Для определения положения тела в любой момент времени ис­пользуется уравнение φ =f/(t).

Следовательно, для определе­ния угловой скорости можно пользоваться выражением .

Иногда для оценки быстро­ты вращения используют угловую частоту вращения n, которая оце­нивается в оборотах в минуту.

Угловая скорость и частота вращения физически близкие ве­личины:

Изменение угловой скорости во времени определяется угловым ускорением ε, [ε] = рад/с2;

Частные случаи вращательного движения

Равномерное вращение (угловая скорость постоянна):

ω = const.

Уравнение (закон) равномерного вращения в данном случае имеет вид:

φ = φ0 + φt,

где φ0 — угол поворота до начала отсчета.

Кинематические графики для этого вида движения изображены на рис. 11.4.

Скорости и ускорения точек вращающегося тела

Тело вращается вокруг точки О. Определим параметры движения точки Л, расположенной на расстоянии г а от оси вращения (рис. 11.6, 11.7).

Рис. 11.6

Рис. 11.7

Путь точки А: SA = φrA.

Линейная скорость точки А: vA = ωrA.

Ускорение точки А: atA = εrA – касательное; : atA = εrA

Основные понятия и аксиомы динамики.

Понятие о трении

Иметь представление о массе тела и ускорении свободного падения, о связи между силовыми и кинематическими параметрами движения, о двух основных задачах динамики.

Знать аксиомы динамики и математическое выражение основного закона динамики.

Знать зависимости для определения силы трения.

Содержание и задачи динамики

Первая аксиома (принцип инерции)

Всякая изолированная материальная точка находится в состоянии покоя или равномерного и прямолинейного движения, пока приложенные силы не выведут ее из этого состояния.

Это состояние называют состоянием инерции. Вывести точку из этого состояния, т.е. сообщить ей некоторое ускорение, может внешняя сила.

Всякое тело (точка) обладает инертностью. Мерой инертности является масса тела.

Массой называют количество вещества в объеме тела, в классической механике ее считают величиной постоянной. Единица измерения массы — килограмм (кг).

Вторая аксиома (второй закон Ньютона — основной закон динамики).

Четвертая аксиома (закон независимости действия сил)

Каждая сила системы сил действует так, как она действовала бы одна.

Ускорение, сообщаемое точке системой сил, равно геометрической сумме ускорений, сообщенных точке каждой силой в отдельности (рис. 13.2):

Рис. 13.2

Понятие о трении. Виды трения

Коэффициент трения скольжения зависит от следующих факторов:

— от материала: материалы делятся на фрикционные (с большим коэффициентом трения) и антифрикционные (с малым коэффициентом трения), например f = 0,l ÷ 0,15 (при скольжении стали по стали всухую), f = 0,2 ÷ 0,3 (при скольжении стали по текстолиту);

от наличия смазки, например f = 0,04 ÷ 0,05 (при скольжении стали по стали со смазкой);

от скорости взаимного перемещения.

Трение качения

Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения.

Обычно считают грунт мягче колеса, тогда в основном деформируется грунт, и в каждый момент колесо должно перекатываться через выступ грунта. Для равномерного качения колеса необходимо прикладывать силу FnB (рис. 13.4).


Сопротивление материалов