Сопротивление материалов Растяжение и сжатие mПолярный момент инерции сечения mНапряжения и деформации при кручении mДеформации при чистом изгибе mОсобенность расчета валов

Теоретическая механика Сопративление материалов

Тема 2.2. Растяжение и сжатие.

 Продольные и поперечные деформации.

Закон Гука

Иметь представление о продольных и поперечных деформация! и их связи.

Знать закон Гука, зависимости и формулы для расчета на­пряжений и перемещений.

Уметь проводить расчеты на прочность и жесткость ста­тически определимых брусьев при растяжении и сжатии.

Деформации при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной силы F (рис. 21.1).

Рис. 21.1

Начальные размеры бруса: lo – начальная длина, ао — начальная ширина.

Брус удлиняется на величину Δl; Δl - абсолютное удлинение. При растя­жении поперечные размеры уменьшают­ся, Δа — абсолютное сужение; Δl > 0; Δа < 0.

При сжатии выполняется соотноше­ние Δl < 0; Δа > 0.

В сопротивлении материалов приня­то рассчи-

тывать деформации в относи­тельных единицах:

; ε - относительное удлинение;

; ε' – относительное сужение.

Между продольной и поперечной деформациями существует за­висимость

ε' = με,

где μ — коэффициент поперечной деформации, или коэффициент Пуассона, -характеристика пластичности материала.

Закон Гука

В пределах упругих деформаций деформации прямо пропорциональны нагрузке:

F = kΔl,

где F — действующая нагрузка; k — коэффициент.

В современной форме:

.

Получим зависимость σ=Eε, где Е — модуль упругости, характеризует жесткость материала.

В пределах упругости нормальные напряжения пропорциональны относительному удлинению.

Значение Е для сталей в пределах (2÷2,l) • 105 МПа.

Абсолютное удлинение бруса прямо пропорционально вели
чине продольной силы в сечении, длине бруса и обратно пропорционально площади поперечного сечения и модулю упругости.

Связь между продольной и поперечной деформациями зависит от свойств материала, связь определяется коэффициентом Пуассона, называемом коэффициентом поперечной деформации.

Коэффициент Пуассона: у стали μ от 0,25 до 0,3; у пробки μ = 0: у резины μ = 0,5.

3. Поперечные деформации меньше продольных и редко влияют
на работоспособность детали; при необходимости поперечная деформация рассчитывается через продольную.

Примечание. Балка защемлена, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со свободного конца (справа).

1. Два участка нагружения:

участок 1: N1 = + 25 кН; растянут;

участок 2: 25 – 60 + N2 = 0; N2 = - 35 кН; сжат.

2. Три участка по напряжениям:

; ;

Механические испытания, механические характеристики.

Предельные и допускаемые напряжения

Иметь представление о предельных и допускаемых напряжениях и коэффициенте запаса прочности.

Знать диаграммы растяжения и сжатия пластичных и хрупких материалов, порядок расчетов на прочность.

При выборе материалов для элементов конструкции и расчетов на прочность необходимо знать механические характеристики. Необходимые сведения получают экспериментально при испытаниях на растяжение, сжатие, срез, кручение и изгиб.

Механические испытания.

Статические испытания на растяжение и сжатие

Характеристики пластичности материала

δ - максимальное удлинение в момент разрыва

%,

где Δlmax – максимальное остаточное удлинение (рис. 22.3);

ψ – максимальное сужение при разрыве

%,

где Аш – площадь образца в месте разрыва.

Характеристики пластичности определяют способность матер ала к деформированию, чем выше значения δ и ψ, тем матери пластичнее.

Предельные и допустимые напряжения

Предельным напряжением считают напряжение, при котором в материале возникает опасное состояние (разрушение или опасная деформация).

Для пластичных материалов предельным напряжением считают предел текучести, т. к. возникающие пластические деформации не исчезают после снятия нагрузки:

.

Для хрупких материалов, где пластические деформации отсутствуют, а разрушение возникает по хрупкому типу (шейки не образуется), за предельное напряжение принимают предел прочности:

.

Для пластично-хрупких материалов предельным напряжением считают напряжение, соответствующее максимальной деформации 0,2% (σо,2):

.

Допускаемое напряжение — максимальное напряжение, при котором материал должен нормально работать.

Допускаемые напряжения получают по предельным с учетом запаса прочности:

Особенности поведения материалов при испытания: на сжатие

1. Пластичные материалы практически одинаково работают при растяжении и сжатии. Механические характеристики при растяжении и сжатии одинаковы.

2. Хрупкие материалы обычно обладают большей прочностью при сжатии, чем при растяжении: σвр < σвс.

Если допускаемое напряжение при растяжении и сжатии различно, их обозначают [σр] (растяжение), [σс] (сжатие).

Расчеты на прочность при растяжении и сжатии

Расчеты на прочность ведутся по условиям прочности - неравенствам, выполнение которых гарантирует прочность детали при 1ных условиях.

Для обеспечения прочности расчетное напряжение не должно превышать допускаемого напряжения:

Полученную величину округляем в большую сторону d = 25мм, А = 4,91 см2.

Сечение — равнополочный уголок № 5 по ГОСТ 8509-86.

Ближайшая площадь поперечного сечения уголка - А = 4,29 см2 (d = 5мм). 4,91 > 4,29 (Приложение 1).

Контрольные вопросы и задания

1. Запишите условие прочности при растяжении и сжатии. Отличаются ли условия прочности при расчете на растяжение и расчете на сжатие.

Практические расчеты на срез и смятие.

Основные предпосылки расчетов и расчетные формулы

Иметь представление об основных предпосылках и условностях расчетов о деталях, работающих на срез и смятие.

Знать внутренние силовые факторы, напряжения и деформации при сдвиге и смятии, условия прочности.

Уметь определять площади среза и смятия.

Детали соединений (болты, штифты, шпонки, заклепки) работают так, что можно учитывать только один внутренний силовой фактор — поперечную силу. Такие детали рассчитываются на сдвиг.

Смятие

Довольно часто одновременно со сдвигом происходит смятие боковой поверхности в месте контакта в результате передачи нагрузки от одной поверхности к другой. При этом на поверхности возникают сжимающие напряжения, называемые напряжениями смятия, σсм.

Расчет также носит условный характер. Допущения подобны принятым при расчете на сдвиг (см. выше), однако при расчете боковой цилиндрической поверхности напряжения по поверхности распределены не равномерно, поэтому расчет проводят для наиболее нагруженной точки (на рис. 23.46). Для этого вместо боковой поверхности цилиндра в расчете используют плоскую поверхность, проходящую через диаметр. На рис. 23.4 показана примерная схема передачи давления на стержень заклепки.

Таким образом, условие прочности при смятии можно выразить соотношением

Тема 2.4. Геометрические характеристики плоских сечений

Иметь представление о физическом смысле и порядке определения осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Знать формулы моментов инерции простейших сечений, способы вычисления моментов инерции при параллельном переносе осей.

При растяжении, сжатии, смятии и сдвиге деталь сопротивляется деформации всем сечением одинаково. Здесь геометрической характеристикой сечения является площадь.

При кручении и изгибе сечение сопротивляется деформации не одинаково, при расчетах напряжений появляются другие геометрические характеристики сечения, влияющие на сопротивления сечения деформированию.

Статический момент площади сечения

Рассмотрим произвольное сечение (рис. 25.1).

Рис. 25.1

Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать полученное выражение, получим статический момент площади сечения:

1) относительно оси Ox ;

2) относительно оси Oy .

Для симметричного сечения статические моменты каждой половины площади равны по величине и имеют разный знак. Следовательно, статический момент относительно оси симметрии равен нулю.

Статический момент используется при определении положения центра тяжести сечения:


Основные понятия и аксиомы статики