Электрические машины и трансформаторы

Электротехника
Электрические машины и трансформаторы
Определение фазных и линейных токов приемников
Электрическая машина
Принцип действия асинхронного двигателя
Трансформаторы

Векторная диаграмма трансформатора

Переходные процессы в трансформаторах
Трансформаторные устройства специального назначения
Холостой ход трансформатора
Опыт короткого замыкания
Трехобмоточный трансформатор
Измерительные трансформаторы.
Электрические двигатели и генераторы
Асинхронный генератор
Параметры асинхронной машины 
Регулирование скорости вращения

Однофазные асинхронные двигатели.

Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Несимметричная нагрузка трехфазного генератора
Однофазный синхронный генератор
Синхронный двигатель 
Синхронные машины заводов Советского Союза
Машины постоянного тока – генераторы и двигатели
Генератор с параллельным возбуждением
Электромашинные усилители
Электромашинные преобразователи тока
 

Векторная диаграмма трансформатора

Воспользовавшись схемой замещения приведенного трансформатора и основными уравнениями напряжений и токов (1.34), построим векторную диаграмму трансформатора, наглядно показывающую соотношения и фазовые сдвиги между токами, ЭДС и напряжениями трансформатора. Векторная диаграмма — графическое выражение основных уравнений приведенного трансформатора (1.34).

Построение диаграммы (рис. 1.19, а) следует начинать с вектора максимального значения основного магнитного потока .

Вектор тока  опережает по фазе вектор потока  на угол δ, а векторы ЭДС , и  отстают от этого вектора на угол 90° [см. (1.6) и (1.7)]. Далее строим вектор . Для определения угла сдвига фаз между  и  следует знать характер нагрузки. Предположим, что нагрузка трансформатора активно-индуктивная. Тогда вектор . отстает по фазе от  на угол

  (1.35)

определяемый как характером внешней нагрузки, так и собственными сопротивлениями вторичной обмотки.

Рис. 1.19. Векторные диаграммы трансформатора при активно-индуктивной (а) и активно-емкостной (б) нагрузках

Для построения вектора вторичного напряжения  необходимо из вектора ЭДС  вычесть векторы падений напряжения  и . С этой целью из конца вектора  опускаем перпендикуляр на направление вектора тока  и откладываем на нем вектор . Затем проводим прямую, параллельную , и на ней откладываем вектор . Построив вектор , получим треугольник внутренних падений напряжения во вторичной цепи. Затем из точки О проводим вектор , который опережает по фазе ток на угол φ2=arctg(х’н/rн').

Вектор первичного тока строим как векторную сумму: . Вектор  проводим из конца вектора  противоположно вектору . Построим вектор , для чего к вектору , опережающему по фазе вектор потока  на 90°, прибавляем векторы внутренних падений напряжения первичной обмотки: вектор , параллельный току , и вектор , опережающий вектор тока  на угол 90°. Соединив точку О с концом вектора , получим вектор , который опережает по фазе вектор тока , на угол φ1.

Иногда векторную диаграмму трансформатора строят с целью определения ЭДС обмоток. В этом случае заданными являются параметры вторичной обмотки: U2, I2 и соsφ2. Зная w1/w2, определяют  и  а затем строят векторы этих величин под фазовым углом φ2 друг к другу. Вектор ЭДС  получают геометрическим сложением вектора напряжения  с падениями напряжения во вторичной обмотке:

В случае активно-емкостной нагрузки векторная диа­грамма трансформатора имеет вид, показанный на рис. 1.19, б. Порядок построения диаграммы остается прежним, но вид ее несколько изменяется. Ток  в этом случае опережает по фазе ЭДС  на угол

  (1.36)

При значительной емкостной составляющей нагрузки падение напряжения в емкостной составляющей сопротивления нагрузки и индуктивное падение напряжения рассеяния во вторичной обмотке частично компенсируют друг друга. В результате напряжение  может оказаться больше, чем ЭДС . Кроме того, реактивная (опережающая) составляющая вторичного тока  совпадает по фазе с реактивной составляющей тока х.х. , т. е. оказывает на магнитопровод трансформатора подмагничшающее действие.

Это ведет к уменьшению первичного тока , по сравнению с его значением при активно-индуктивной нагрузке, когда составляющая  оказывает размагничивающее влияние (рис. 1.19, а).

§ 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов

Рис. 1.20. Трансформаторная группа (а) и трехфазный трансформатор (б)

Трансформирование трехфазной системы напряжений можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу (рис. 1.20, а). Однако относительная громоздкость, большой вес и повышенная стоимость — недостаток трансформаторной группы, поэтому она применяется только в установках большой мощности с целью уменьшения веса и габаритов единицы оборудования, что важно при монтаже и транспортировке трансформаторов.

Рис. 1.21. Трехстержневой магнитопровод и векторные диаграммы

В установках мощностью примерно до 60000 кВ-А обычно применяют трехфазные трансформаторы (рис. 1.20, б), у которых обмотки расположены на трех стержнях, объединенных в общий магнитопровод двумя ярмами (см. рис. 1.2). Но полученный таким образом магнитопровод является несимметричным: магнитное сопротивление потоку средней фазы ФВ меньше магнитного сопротивления потокам крайних фаз ФА и Фс (рис. 1.21, а).

Так как к первичным обмоткам трехфазного трансформатора подводится симметричная система напряжений  и  то в магнитопроводе трансформатора возникают магнитные потоки  и , образующие также симметричную систему (рис. 1.21, 6). Однако вследствие магнитной несимметрии магнитопровода намагничивающие токи отдельных фазовых обмоток не равны: намагничивающие токи обмоток крайних фаз ( и ) больше намагничивающего тока обмотки средней фазы . Кроме того, токи  и  оказываются сдвинутыми по фазе относительно соответствующих потоков  и  на угол α. Таким образом, при симметричной системе трехфазного напряжения, подведенного к трансформатору, токи х.х. образуют несимметричную систему (рис. 1.21, в).

Для уменьшения магнитной несимметрии трехстержневого магнитопровода, т.е. уменьшения магнитного сопротивления потокам крайних фаз, сечение ярм делают на 10—15% больше сечения стержней, что уменьшает их магнитное сопротивление. Несимметрия токов х.х. трехстержневого трансформатора практически не отражается на работе трансформатора, так как даже при небольшой нагрузке различие в значениях токов ,  и   становится незаметным.

Таким образом, при симметричном питающем напряжении и равномерной трехфазной нагрузке все фазы трехфазного трансформатора, выполненного на трехстержневом магнитопроводе, практически находятся в одинаковых условиях. Поэтому рассмотренные выше уравнения напряжений, МДС и токов, а также схема замещения и векторные диаграммы могут быть использованы для исследования работы каждой фазы трехфазного трансформатора.

Обмотки трехфазных трансформаторов принято соединять по следующим схемам: звезда; звезда с нулевым выводом; треугольник; зигзаг с нулевым выводом. Схемы соединения обмоток трансформатора обозначают дробью, в числителе которой указана схема соединения обмоток ВН, а в знаменателе — обмоток НН. Например, Y/A означает, что обмотки ВН соединены в звезду, а обмотки НН — в треугольник.

Рис. 1.22. Соединение обмоток в зигзаг

Соединение в зигзаг применяют только в трансформаторах специального назначения, например в трансформаторах для выпрямителей (см. § 5.2). Для выполнения соединения каждую фазу обмотки НН делят на две части, располагая их на разных стерж­нях. Указанные части обмоток соединяют так, чтобы конец одной части фазной обмотки был присоединен к концу другой части этой же обмотки, расположенной на другом стержне (рис. 1.22, а). Зигзаг называют равноплечным, если части обмоток, располагаемые на разных стержнях и соединяемые последовательно, одинаковы, и неравноплечными, если эти части неодинаковы. При соединении в зигзаг ЭДС отдельных частей обмоток геометрически вычитаются (рис. 1.22, б).

Выводы обмоток трансформаторов принято обозначать следующим образом: обмотки ВН — начало обмоток А, В, С, соответствующие концы X, Y, Z; обмотки НН — начала обмоток а, Ь, с, соответствующие концы х, у, z.

При соединении обмоток звездой линейное напряжение больше фазного (), а при соединении обмоток треугольником линейное напряжение равно фазному (Uл = Uф ).

Отношение линейных напряжений трехфазного трансформатора определяется следующим образом:

Схема соединения обмоток

Y/Y

∆/Y

∆/∆

Y/∆

Отношение линейных напряжений

Таким образом, отношение линейных напряжений в трехфазном трансформаторе определяется не только отношением чисел витков фазных обмоток, но и схемой их соединений.

Пример 1.3. Трехфазный трансформатор номинальной мощностью Sном =100 кВ-А включен по схеме Y/∆. При этом номинальные линейные напряжения на входе и выходе трансформатора соответственно равны: U1ном = 3,0 кВ, U2ном = 0,4 кВ. Определить соотношение витков wllw2 и номинальные значения фазных токов в первичной I1ф и вторичной I2ф обмотках.

Решение. Фазные напряжения первичных и вторичных обмоток

Требуемое соотношение витков в трансформаторе w1/w2 = U1ф/U2ф= 1,73/0,4 = 4,32.

Номинальный фазный ток в первичной обмотке (соединенной в звезду)

I1Ф = I1ном=SHOM/(√3U1ном) = 100/(√3·3,0) = 19,3 А.

Номинальный фазный ток во вторичной обмотке (соединенной в треугольник)

I2Ф = I2ном /√З = SHOM /(3 U2ном) = 100/(З • 0,4) = 8,33 А.

Таким образом, соотношение фазных токов I2Ф/ I1Ф =83,3/19,3 = 4,32 равно соотношению витков в обмотках трансформатора.

Явления при намагничивании магнитопроводов трансформаторов Допустим, что к первичной обмотке трансформатора подведено синусоидальное напряжение.

Опытное определение параметров схемы замещения трансформаторов

Потери и КПД трансформатора В процессе трансформирования электрической энергии часть энергии теряется в трансформаторе на покрытие потерь. Потери в трансформаторе разделяются на электрические и магнитные.

Регулирование напряжения трансформаторов Обмотки ВН понижающих трансформаторов снабжают регулировочными ответвлениями, с помощью которых можно получить коэффициент трансформации, несколько отличающийся от номинального, соответствующего номинальному вторичному напряжению при номинальном первичном.

Электротехника