Электрические машины и трансформаторы

Электротехника
Электрические машины и трансформаторы
Определение фазных и линейных токов приемников
Электрическая машина
Принцип действия асинхронного двигателя
Трансформаторы

Векторная диаграмма трансформатора

Переходные процессы в трансформаторах
Трансформаторные устройства специального назначения
Холостой ход трансформатора
Опыт короткого замыкания
Трехобмоточный трансформатор
Измерительные трансформаторы.
Электрические двигатели и генераторы
Асинхронный генератор
Параметры асинхронной машины 
Регулирование скорости вращения

Однофазные асинхронные двигатели.

Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Несимметричная нагрузка трехфазного генератора
Однофазный синхронный генератор
Синхронный двигатель 
Синхронные машины заводов Советского Союза
Машины постоянного тока – генераторы и двигатели
Генератор с параллельным возбуждением
Электромашинные усилители
Электромашинные преобразователи тока
 

Трехобмоточный трансформатор

 Большие трансформаторы, устанавливаемые в начале или конце длинных линий электропередачи и иногда на мощных промежуточных подстанциях, часто выполняются с тремя обмотками на каждую фазу, причем одна из них обычно служит в качестве первичной, а две другие – в качестве вторичных

Рис. 2-51. Трехобмоточный трансформатор.

 Например, на электрических станциях, от которых отходят две линии электропередачи, часто устанавливаются трехобмоточные трансформаторы с первичным напряжением 10,5 кВ и вторичными

напряжениями 121 и 38,5 кВ (для линий электропередачи).

Трансформаторы с тремя (и больше) обмотками малой мощности применяются также в радиотехнических устройствах.

Трехобмоточный трансформатор заменяет собой два двухобмоточных трансформатора. Его применение, очевидно, выгоднее, чем последних.

Если пренебречь током холостого хода, то можно написать, что сумма н.с. всех трех обмоток равна нулю:

          (2-104)

 или

          (2-105)

где  и  ― токи второй и третьей обмоток, приведенные к числу витков первой обмотки.

Пусть первая обмотка будет первичной, а вторая и третья – вторичными. Из (2-105) получаем:

          (2-106)

т. е. первичный ток равен не арифметической, а геометрической сумме приведенных вторичных токов (взятой с обратным знаком). Учитывая это равенство, а также то, что вторичные обмотки обычно не имеют одновременно и длительно полной нагрузки, номинальная мощность первичной обмотки берется меньше суммы номинальных мощностей обеих вторичных обмоток.

2-17. Трехобмоточный трансформатор

б) Уравнения напряжений и схема замещения.

 Будем по-прежнему считать первую обмотку за первичную, а две другие обмотки – за вторичные и примем, что все обмот­ки имеют одинаковые числа витков: w1 = w2 = w3.

В этом случае согласно (2-104) имеем:

          (2-107)

          (2-108)

Уравнения напряжений обмоток напишутся в следующем виде

          (2-109)

Учитывая (2-107), найдем из 1-го и 2-го уравнений (2-109) падение напряжения в обмотках 1–2:

          (2-110)

Учитывая (2-108), из 1-го и 3-го уравнений (2-109) найдем падение напряжения в обмотках 1–3:

          (2-111)

Для каждой пары обмоток имеем равенства:

   

Полученные в (2-110) и (2-111) величины

          (2-112)

условно могут рассматриваться как индуктивные сопротивления рассеяния обмоток; каждое из них обусловлено индуктивностью обмотки и взаимными индуктивностями всех трех пар обмоток.

Из (2-110) и (2-111) следует:

          (2-113)

Равенствам (2-113) соответствует схема замещения трехобмо­точного

трансформатора, представленная на рис. 2-52.

 

Рис. 2-52. Схема замещения трехобмоточного трансформатора.

 Ее параметры могут быть определены как опытным, так и расчетным путем.

При опытном определении Z1, Z2, Z3 нужно иметь данные трех опытов короткого замыкания.

При первом опыте замыкается накоротко обмотка 2, обмотка 3 оставляется разомкнутой, пониженное напряжение подводится к обмотке 1 (рис. 2-53,а); измеряются, так же как при опыте короткого замыкания двухобмоточного трансформатора, U, I, Р. По данным измерений находим:

          (2-114)

          (2-115)

Рис. 2-53. Схемы трех опытов короткого замыкания для трехобмоточного трансформатора.

 При втором опыте замыкается на­коротко обмотка 3, обмотка 2 остается разомкнутой, пониженное напряжение подводится к обмотке 1 (рис. 2-53,б). По данным измерений находим:

          (2-116)

          (2-117)

При третьем опыте замыкается накоротко обмотка 3 (или 2), обмотка 1 остается разомкнутой, пониженное напряжение подводится к обмотке 2 (или 3) (рис. 2-53,в). По данным измерений находим:

          (2-118)

          (2-119)

2-17. Трехобмоточный трансформатор

Для реального трансформатора  поэтому в (2-114)–(2-117) войдут величины, , , , , приведенные к числу витков обмотки 1.

B (2-118) и (2-119) войдут величины  и , приведенные к числу витков обмотки 2. Для последующих расчетов xк23 и rк23 должны быть приведены к числу витков обмотки 1, т. е. умножены на  Все активные сопротивления должны быть приведены к температуре 75°С (§ 2-6).

Складывая (2-114) и (2-116) и вычитая (2-118), найдем:

          (2-120)

Складывая (2-114) и (2-118) и вычитая (2-116), найдем:

          (2-121)

Складывая (2-116) и (2-118) и вычитая (2-114), найдем:

          (2-122)

Аналогично из (2-115), (2-117) и (2-119) находим:

Для повышающего автотрансформатора, схема которого показана на рис. 2-49, можем написать следующие уравнения напряжений:

          (2-94)

          (2-95)  

          (2-96)

Рис. 2-49. Схема повышающего автотрансформатора.

 Учитывая (2-78а) и (2-76), получим:

          (2-97)

          (2-98)

Отсюда имеем:

          (2-99)

Приравняв в (2-99)  = 0, найдем ток короткого замыкания:

          (2-100)

Номинальное напряжение короткого замыкания uа к автотрансформатора

         

(2-101)

При сравнении с двухобмоточным трансформатором последний надо взять с числами витков во вторичной обмотке (w2 – w1,) и в первичной обмотке w1, но с номинальным током в первичной обмотке  Тогда номинальное напряжение короткого замыкания такого двухобмоточного трансформатора

          (2-102)

Следовательно, и для повышающего автотрансформатора

          (2-103)

Недостатком автотрансформатора является то, что здесь вторичная цепь оказывается электрически соединенной с первичной цепью. Она должна иметь такую же изоляцию по отношению к земле, как и первичная цепь. Это обстоятельство заставляет выбирать значение коэффициента трансформации автотрансформатора при высоких напряжениях не выше 2–2,5.

Схема трехфазного автотрансформатора представлена на рис. 2-50.

Рис. 2-50. Схема трехфазного автотрансформатора.

 Автотрансформаторы находят себе применение в качестве пусковых для пуска больших синхронных двигателей и короткозамкнутых асинхронных двигателей, для осветительных установок (для дуговых ламп переменного тока), для связи сетей с напряжениями, мало отличающимися одно от другого. В последнем случае трехфазные автотрансформаторы снабжаются еще одной обмоткой, соединенной треугольником, для подавления третьей гармоники в кривых магнитных потоках и, следовательно, в кривых фазных э.д.с. (см. § 2-13).

Автотрансформаторы выполняются также с устройством, позволяющим плавно регулировать их вторичное на­пряжение. Регулирование напряжения осуществляется путем изменения числа витков обмотки при помощи специальных переключателей или контакта, перемещаемого непосредственно по обмотке, очищенной с одной стороны от изоляции.

трансформатора сначала рассчитываются хк12, xк13 и хк23 так же, как для двухобмоточного трансформатора [формула (2-75)], затем по (2-120) – (2-122) определяются х1, х2, х3. Расчет r1, r2, r3 производится обычными методами. Отметим особенности трехобмоточного трансформатора, имеющего коаксиальное расположение обмоток, наиболее часто применяемое на практике (рис. 2-51). Здесь следует различать одностороннее расположение вторичных обмоток относительно первичной, когда первичной является обмотка 1 или 3, и двустороннее расположение вторичных обмоток относительно первичной, когда первичной является обмотка 2. В первом случае изменение нагрузки одной вторичной обмотки заметно влияет на напряжение другой вторичной обмотки, во втором случае это влияние почти исчезает. Сказанное может быть подтверждено следующими приближенными расчетами.

Примем, что толщина каждой обмотки бесконечно мала, длины их по оси одинаковы и что диаметры окружностей D12, D13, D23 приблизительно равны между собой (рис. 2-54).

Рис. 2-54. К определению х1, х2, х3.

 Тогда в соответствии с формулой (2-75) можем написать:

            (2-123)

где с – согласно допущениям постоянная величина.

Если подставить в (2-120) – (2-122) приближенные равенства (2-123), то получим:

          (2-124)

          (2-125)

          (2-126)

В действительности при учете толщины обмоток и различия D12, D13, D23 величина х2 получается немного отличающейся от нуля (часто имеет отрицательное значение), но все же она обычно в десятки раз меньше х1 и х3. Приведенные соотношения лишний раз подтверждают условный характер величин х1, х2, x3 как индуктивных сопротивлений рассеяния обмоток.

Так как для большого трансформатора значения r1, r2, r3 относительно малы, то можно в схеме замещения такого трансформатора (рис. 2-52) с расположением обмоток, показанным на рис. 2-51, принять Z2  0.

Расчет тока холостого хода

Определение параметров трансформатора расчетным путем

Автотрансформатор

Соотношение мощностей.  За номинальную мощность трехобмоточного трансформатора принимается мощность наиболее мощной обмотки. К этой мощности приводятся все напряжения короткого замыкания uк12, uк23, uк13, которые указываются на щитке трансформатора.

Электротехника