Электрические машины и трансформаторы

Электротехника
Электрические машины и трансформаторы
Определение фазных и линейных токов приемников
Электрическая машина
Принцип действия асинхронного двигателя
Трансформаторы

Векторная диаграмма трансформатора

Переходные процессы в трансформаторах
Трансформаторные устройства специального назначения
Холостой ход трансформатора
Опыт короткого замыкания
Трехобмоточный трансформатор
Измерительные трансформаторы.
Электрические двигатели и генераторы
Асинхронный генератор
Параметры асинхронной машины 
Регулирование скорости вращения

Однофазные асинхронные двигатели.

Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Несимметричная нагрузка трехфазного генератора
Однофазный синхронный генератор
Синхронный двигатель 
Синхронные машины заводов Советского Союза
Машины постоянного тока – генераторы и двигатели
Генератор с параллельным возбуждением
Электромашинные усилители
Электромашинные преобразователи тока
 

Регулировочные трансформаторы.

 Силовые трансформаторы снабжаются ответвлениями обычно от обмотки высшего напряжения, позволяющими изменять ее число витков на ±5%, или на ±22,5%. В мощных трансформаторах ответвления, как правило, делаются в середине обмотки (по высоте), так как в этом случае при внезапном коротком замыкании в меньшей степени возрастают аксиальные электромагнитные силы, действующие на обмотки.

На рис. 2-77 показаны различные способы размещения ответвлений от средней части обмотки (по высоте), и здесь же указаны их обозначения согласно ГОСТ.

 

Рис. 2-77. Способы размещения ответвлений от средней части обмотки (a1, б1, в1) и соответствующие им переключатели ответвлений (a2, б2, в2).

 В современных трансформаторах переключения производятся при помощи контактного переключателя, имеющего в обычных случаях систему неподвижных контактов, соединенных с ответвлениями, и систему движущихся контактов, замыкающих разные пары неподвижных контактов.

Переключения ответвлений при помощи переключателя, рукоятка которого выводится наружу на крышку или на боковую сторону бака трансформатора, производятся только после его отключения от первичной и вторичной сетей. В трансформаторах устаревших конструкций, еще встречающихся на практике, ответвления выводились наружу при помощи проходных изоляторов с тремя зажимами; здесь переключения делаются вручную.

Регулировочными трансформаторами обычно называются трансформаторы, позволяющие регулировать вторичное напряжение под нагрузкой. Для этого используется переключатель, при котором осуществляется изменение числа витков обмотки без разрыва цепи. Наиболее часто применяется переключатель с токоограничивающим реактором, принципиальная схема которого показана на рис. 2-78.

 

Рис. 2 78. Схема переключения обмотки трансформатора под нагрузкой с токоограничиваюшим реактором (ответвления от обмотки соединяются с соответственно пронумерованными пластинами переключателя).

 При указанном на рисунке положении, когда переключатели а и b соединены с одной и той же пластиной 1 и когда выключатели В1 и В2 включены, токи в обеих половинах обмотки реактора Р направлены противоположно друг другу и поэтому сопротивление его мало. При изменении числа витков в процессе переключений сначала выключается B1, затем переключатель а переводится на пластину 2 и B1 снова включается. Теперь по реактору, кроме рабочего, проходит ток, вызванный напряжением между точками 1 и 2. Но этот ток будет проходить по обеим половинам обмотки реактора в одном и том же направлении, вследствие чего возрастет его индуктивное сопротивление и ток не будет превышать некоторого допустимого значения. После этого выключается В2, переключатель b переводится на пластину 2 и В2 снова включается. Таким образом, перерод переключателей а и b производится практически без разрыва цепи при очень небольших токах. Все переключающее устройство автоматизируется. Оно обычно помещается в специальном баке, пристраиваемом сбоку к главному баку трансформатора.

г) Трансформаторы для радиоэлектроники.

 Широкое применение в различных схемах радиоэлектроники находят трансформаторы малой мощности (от нескольких ВА до тысячных долей ВА). К таким трансформаторам предъявляются особые требования, которые могут быть удовлетворены только при применении специальных ферромагнитных материалов и специального устройства их обмоток и сердечника.

В современной электронной аппаратуре, применяемой в разнообразных отраслях техники, используются трансформаторы, преобразующие ток или напряжение электрических сигналов в широком спектре звуковых и сверхзвуковых частот. Они, как и усилители, рассчитанные на этот диапазон частот, условно называются трансформаторами и усилителями низких частот.

Также широко применяются «импульсные трансформаторы», преобразующие кратковременные импульсные токи, продолжительность которых измеряется микросекундами при числе импульсов в секунду до 1 000.

Указанные трансформаторы должны быть устроены таким образом, чтобы искажения, вносимые ими, были как можно меньше, т. е. форма кривой напряжения (или тока) на вторичной стороне должна повторять возможно точнее форму кривой напряжения (или тока) на первичной стороне. При этом приходится брать малые насыщения сердечника трансформатора и учитывать не только активные и индуктивные сопротивления обмоток, но и их емкостные связи, так как при высокой частоте (преобразуемого тока) токи, протекающие через емкости между обмотками, соизмеримы с токами, непосредственно протекающими по обмоткам. Приходится в этом случае применять специальную укладку витков обмоток и иногда особые системы металлических экранов.

В электронной технике находят себе также применение трансформаторы, которые на выходе дают периодически изменяющееся напряжение резко заостренной (пикообразной) формы. Они получили название пик-трансформаторов. Применяются они, например, при регулировании сеточного напряжения тиратронов.

Рассмотрим здесь два возможных исполнения таких трансформаторов, принцип устройства которых показан на рис. 2-79.

Рис. 2-79. Принцип устройства пик-трансформаторов.
a – трансформатор с сильно насыщенным сердечником и большим активным сопротивлением в первичной цепи; б – трансформатор с насыщенным стержнем и магнитным шунтом.

 В первом случае (а) трансформатор включается на синусоидальное напряжение u1 = U1мsint через большое активное сопротивление R. Его сердечник должен быть сильно насыщенным. При холостом ходе ток i1 в первичной обмотке будет близок к синусоидальному, так как в основном он будет определяться сопротивлением R. При этом магнитный поток Ф, как показано на рис. 2-79,а, будет иметь сильно уплощенную форму. Следовательно, э.д.с.  будет иметь пикообразную форму. Во втором случае (б) вторичная обмотка располагается на стержне, имеющем относительно малое сечение. Параллельно ему устанавливается магнитный шунт с почти линейной характеристикой. При синусоидальном магнитном потоке Ф = Ф2+Фш его составляющие Ф2 и Фш будут несинусоидальными (рис. 2-79,б); поток Ф2 из-за быстрого насыщения стержня 2 будет иметь уплощенную форму, при которой э.д.с. е2 вторичной обмотки получит пикообразную форму.

Электротехника