Электрические машины и трансформаторы

Электротехника
Электрические машины и трансформаторы
Определение фазных и линейных токов приемников
Электрическая машина
Принцип действия асинхронного двигателя
Трансформаторы

Векторная диаграмма трансформатора

Переходные процессы в трансформаторах
Трансформаторные устройства специального назначения
Холостой ход трансформатора
Опыт короткого замыкания
Трехобмоточный трансформатор
Измерительные трансформаторы.
Электрические двигатели и генераторы
Асинхронный генератор
Параметры асинхронной машины 
Регулирование скорости вращения

Однофазные асинхронные двигатели.

Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Несимметричная нагрузка трехфазного генератора
Однофазный синхронный генератор
Синхронный двигатель 
Синхронные машины заводов Советского Союза
Машины постоянного тока – генераторы и двигатели
Генератор с параллельным возбуждением
Электромашинные усилители
Электромашинные преобразователи тока
 

Принцип действия асинхронного двигателя и его энергетическая диаграмма

Для лучшего понимания принципа действия асинхронного двигателя вначале примем, что его вращающееся поле создается путем вращения двух полюсов (постоянных магнитов или электромагнитов), как показано на рис. 3-28.

Рис. 3-28. К пояснению принципа действия асинхронного двигателя.

В проводниках замкнутой обмотки ротора при этом будут наводиться токи. Их направления указаны на рис. 3-28. Они найдены по правилу правой руки, позволяющему определить направление наведенного тока в проводнике, перемещающемся относительно поля. Пользуясь правилом левой руки, найдем направления электромагнитных сил, действующих на ротор и заставляющих его вращаться. Ротор двигателя будет вращаться в направлении вращения поля. Его частота вращения п2, об/мин, будет меньше частоты вращения поля n1, об/мин, так как только в этом случае возможны наведение токов в обмотке ротора и возникновение электромагнитных сил и вращающего момента.

Частота вращения поля n1 называется синхронной частотой вращения.

Скорость поля относительно ротора (n1 – n2) называется частотой скольжения, а отношение этой частоты к частоте поля, обозначаемое через s,

          (3-60)

называется скольжением.

Обозначим через М вращающий момент, который нужно приложить к полюсам (рис. 3-28), чтобы вращать их c частотой n1, об/мин, или с угловой частотой, рад/с,

.          (3-61)

Тогда мощность, необходимая для вращения полюсов,

.        (3-62)

На ротор и полюсы действуют одинаковые электромагнитные силы (действие равно противодействию). Они создают одинаковые вращающие моменты, а так как момент, действующий на полюсы (на рис. 3-28 показан пунктирной стрелкой), равен М, той и на ротор действует момент М. Следовательно, механическая мощность, развиваемая ротором,

,          (3-63)

где угловая частота ротора, рад/с,

.          (3-64)

При работе машины двигателем  < , так как ω2< ω1.

Можно считать, что разность мощностей  и  равна только электрическим потерям в обмотке ротора, имеющей m2 фаз при токе в фазе I2 и ее активном сопротивлении r2, так как потерями в стали ротора, как будет показано, можно пренебречь:

.          (3-65)

Мощность Рэм передается вращающимся полем ротору. Она называется электромагнитной мощностью или мощностью вращающегося поля.

В реальной асинхронной машине, работающей двигателем, электромагнитная мощность Рэм равна первичной мощности Р1, подведенной к статору, за вычетом Рэ1 электрических потерь в обмотке статора

          (3-66)

(m1– число фаз; I1 – ток в фазе обмотки статора, r1, – ее активное сопротивление) и потерь в стали статора Pc1, т. е.

,          (3-67)

Механическая мощность на валу двигателя P2 (полезная мощность) меньше механической мощности , развиваемой ротором. Чтобы получить Р2, нужно вычесть из  механические потери Pмех на трение в подшипниках и вращающихся частей о воздух, потери Рс.д в зубцах статора и ротора, вызываемые пульсациями поля в них, и небольшие добавочные потери Pдоб, возникающие при нагрузке и вызываемые полями рассеяния статора  и ротора:

.         (3-68)

Наглядное представление о распределении мощностей в асинхронном двигателе дает его энергетическая диаграмма, приведенная на рис. 3-29.

Рис. 3-29. Энергетическая диаграмма асинхронного двигателя.

Она соответствует уравнениям (3-67) и (3-68).

Из написанных ранее соотношений (3-62), (3-63) и (3-65) следует:

, (3-69)

так как

.

(В равенствах  угловая механическая скорость является постоянной при f1 = const; поэтому Pэм  M, что дало повод назвать величину Рэм "моментом в синхронных ваттах".) Из (3-69) получаем

          (3-70)

или

.          (3-70а)

Если скольжение выразить в процентах, то можно написать, что s% от мощности Pэм, полученной ротором от статора через посредство вращающегося поля, расходуется в обмотке ротора на электрические потери [см (3-69)], а оставшаяся часть, равная (1– s) 100% от Pэм, преобразуется в механическую мощность  (3-70), развиваемую ротором. Поэтому асинхронные двигатели выполняются таким образом, чтобы их скольжение было невелико. Оно для нормальных двигателей мощностью от 1 до 1 000 кВт при их номинальной нагрузке составляет приблизительно 61%; при больших мощностях обычно s<l%.

Частота вращения поля (синхронная частота) определяется, как указывалось, по формуле (3-53):

,          (3-71)

где f – частота тока статора;

р – число пар полюсов его обмотки.

При стандартной в СССР частоте f = 50 Гц синхронные частоты вращения для различных чисел полюсов имеют значения, приведенные в табл. 3-3.

 Таблица 3-3

2p

2

4

6

8

10

12

14

16

24

48

n1

3000

1500

1000

750

600

500

428

375

250

125

 Частота вращения ротора согласно (3-60), об/мин,

.          (3-72)

Номинальная частота вращения n2н, получающаяся при номинальной нагрузке на валу, указывается на щитке двигателя. Она в обычных случаях позволяет определить синхронную частоту вращения, число полюсов двигателя и его номинальное скольжение sн.

Например, на щитке двигателя, предназначенного для работы при частоте тока f1=50 Гц, указана частота вращения n2н = 730 об/мин. Ближайшая синхронная частота вращения равна 750 об/мин (табл. 3-3), чему соответствует число полюсов 2р = 8.

Скольжение

.

При работе машины в обмотке ее ротора наводится э.д.с.

,          (3-73)

где w2 и k02 – число витков и обмоточный коэффициент обмотки ротора;

          (3-74)

– частота э.д.с. и тока в обмотке ротора. С такой же частотой будет перемагничиваться сталь ротора. При работе машины двигателем частота f2 мала (при fi = 50 Гц f2 = 0,5  3-Гц), поэтому магнитными потерями в стали ротора можно пренебречь, что и было сделано при построении энергетической диаграммы на рис. 3-29.

Электродвижущие силы при несинусоидальном поле.

Намагничивающие силы обмоток

Многофазная обмотка.  Вначале найдем н.с. трехфазной обмотки. Она может быть найдена графически, путем сложения н.с. отдельных фаз с учетом пространственного сдвига осей фаз и сдвига во времени их токов.

Режимы работы машин двигателем, тормозом и генератором

Электротехника