Электрические машины и трансформаторы

Электротехника
Электрические машины и трансформаторы
Определение фазных и линейных токов приемников
Электрическая машина
Принцип действия асинхронного двигателя
Трансформаторы

Векторная диаграмма трансформатора

Переходные процессы в трансформаторах
Трансформаторные устройства специального назначения
Холостой ход трансформатора
Опыт короткого замыкания
Трехобмоточный трансформатор
Измерительные трансформаторы.
Электрические двигатели и генераторы
Асинхронный генератор
Параметры асинхронной машины 
Регулирование скорости вращения

Однофазные асинхронные двигатели.

Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Несимметричная нагрузка трехфазного генератора
Однофазный синхронный генератор
Синхронный двигатель 
Синхронные машины заводов Советского Союза
Машины постоянного тока – генераторы и двигатели
Генератор с параллельным возбуждением
Электромашинные усилители
Электромашинные преобразователи тока
 

Режимы работы машин двигателем, тормозом и генератором

Асинхронная машина при изменении скольжения от 1 до 0 работает как двигатель. В этом случае электромагнитная мощность Pэм передается магнитным полем со статора ротору и частично преобразуется в механическую мощность  частично – в электрическую мощность Рэ2 = sРэм. При работе машины двигателем сдвиг между э.д.с., наведенной в фазе обмотки статора, и током в этой фазе  больше 90°, так же как для первичной обмотки трансформатора.

Исходя из полученных ранее соотношений между мощностями асинхронной машины, можно показать, что при изменении скольжения от s = l до s = ∞машина работает как тормоз. Скольжение s>l получается при вращении ротора против поля. При этом электрические потери в цепи ротора Рэ2 = sРэм будут больше мощности Pэм и, следовательно, только частично покрываются за счет Рэм, передаваемой полем со статора ротору. Другая часть электрических потерь в цепи ротора (s-1)Рэм покрывается за счет механической мощности, приложенной к ротору. Механическая мощность ротора будет отрицательной. Это значит, что она не отдается ротором, а подводится к нему и преобразуется в электрические потери в цепи ротора, т. е. поглощается в самой машине. Поэтому режим работы при s>l называется тормозным режимом.

Электромагнитный момент при этом действует на ротор в направлении вращения поля, т. е. против вращения ротора; следовательно, он является тормозящим по отношению к внешнему моменту, приложенному к валу машины.

Можно также показать, что при отрицательных скольжениях асинхронная машина работает генератором. При < 0 ротор вращается в направлении вращения поля, но с частотой, превышающей частоту поля (n2 > n1). В этом случае

электромагнитная мощность Рэм будет отрицательной, что следует из равенства

.          (3-75)

Мощность Рэм при отрицательном скольжении передается полем с ротора статору. Механическая мощность Р'2 при этом будет также отрицательной, что следует из равенства

.          (3-76)

Механическая мощность, следовательно, приложена к ротору. Часть ее идет на покрытие электрических потерь Рэ2 в цепи ротора, другая часть преобразуется в электромагнитную мощность Рэм, передаваемую полем статору. При работе машины генератором сдвиг между  и  меньше 90° (§ 3-12), так же как для вторичной обмотки трансформатора.

На рис. 3-30 приведена шкала скольжений для режимов генератора, двигателя и тормоза. Указанные режимы работы асинхронной машины и их использование для практических целей более подробно будут рассмотрены в последующем.

Рис. 3-30. Шкала скольжений для режимов генератора, двигателя и тормоза.

3-7. Аналогия с трансформатором

Между обмотками статора и ротора асинхронной машины, как отмечалось, существует только магнитная связь; здесь энергия из одной обмотки в другую передается через посредством магнитного поля.

В последующем будет показано, что при любом скольжении машины н.с. обмоток статора и ротора вращаются относительно статора с одной и той же частотой и, следовательно, неподвижны одна относительно другой. Поле в машине создается их совместным действием.

Примем, так же как для трансформатора, что в асинхронной машине при ее работе имеют место основное поле и поле рассеяния. Индукционные линии основного поля проходят через воздушные зазоры, зубцы и ярма статора и ротора и сцепляются с обеими обмотками – статорной и роторной. Этому полю соответствует главный поток Ф в воздушном зазоре.

Индукционные линии полей рассеяния проходят между стенками пазов, вокруг лобовых частей обмоток и между коронками зубцов (§ 3-16). Так как магнитные сопротивления для потоков индукционных трубок рассеяния определяются в основном воздушными промежутками, то в первом приближении их можно принять постоянными и в соответствии с этим считать постоянными индуктивности рассеяния обмоток статора и ротора Lσ1 и Lσ2 (как для первичной и вторичной обмоток трансформатора).

Главный поток Ф наводит в обмотке статора э.д.с.

          (3-77)

и в обмотке ротора, вращающегося относительно поля со скольжением s, э.д.с.

.          (3-78)

Так как согласно (3-74) f2 = sf1, то можно написать:

,          (3-79)

где

          (3-80)

есть э.д.с., наведенная в обмотке ротора при s = l, т. е. при неподвижном роторе.

Поля рассеяния наводят в обмотках статора и ротора э.д.с. рассеяния  и , которые можно считать пропорциональными соответствующим токам:

; .          (3-81)

Индуктивное сопротивление рассеяния статорной обмотки

.          (3-82)

Индуктивное сопротивление рассеяния роторной обмотки

,          (3-83)

где x2 = 2πf1Lσ2 – сопротивление при неподвижном роторе (при s = l).

Наряду с индуктивными сопротивлениями рассеяния обмотки статора и ротора имеют активные сопротивления r1 и r2.

Таким образом, допустив, что в машине существуют основное поле (и соответствующий ему поток Ф) и отдельно поля рассеяния, мы можем для обмотки статора, так же как для первичной обмотки трансформатора, написать уравнение напряжений

.          (3-84)

Для обмотки ротора уравнение напряжений напишется в следующем виде:

.          (3-85)

В дальнейшем мы покажем, что при составлении соотношений, устанавливающих связь между напряжением, токами, мощностями, вращающим моментом и скольжением асинхронной машины, а также связи этих величин с ее параметрами, можно исходить из ее аналогии с трансформатором; при этом вращающаяся асинхронная машина заменяется

неподвижной, работающей как трансформатор с активным сопротивлением роторной цепи  и ее индуктивным сопротивлением рассеяния х2.

Электротехника