Электрические двигатели и генераторы

Электротехника
Электрические машины и трансформаторы
Определение фазных и линейных токов приемников
Электрическая машина
Принцип действия асинхронного двигателя
Трансформаторы

Векторная диаграмма трансформатора

Переходные процессы в трансформаторах
Трансформаторные устройства специального назначения
Холостой ход трансформатора
Опыт короткого замыкания
Трехобмоточный трансформатор
Измерительные трансформаторы.
Электрические двигатели и генераторы
Асинхронный генератор
Параметры асинхронной машины 
Регулирование скорости вращения

Однофазные асинхронные двигатели.

Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Несимметричная нагрузка трехфазного генератора
Однофазный синхронный генератор
Синхронный двигатель 
Синхронные машины заводов Советского Союза
Машины постоянного тока – генераторы и двигатели
Генератор с параллельным возбуждением
Электромашинные усилители
Электромашинные преобразователи тока
 

Пространственная диаграмма н.с. двигателя

Как указывалось, основное поле в машине создается совместным действием н.с. обмоток статора и ротора.

Намагничивающая сила обмотки статора вращается относительно статора с частотой n1 (об/мин) (или с угловой частотой ω1).

Намагничивающая сила обмотки ротора вращается относительно ротора с частотой  (или sω1) в направлении его вращения. Последнее объясняется тем, что при одном и том же направлении вращения поля относительно обмоток статора и ротора (при s>0) порядки чередования фаз этих обмоток будут одинаковы. Так как сам ротор вращается в сторону вращения поля с частотой n2(ω2), то н. с. ротора относительно статора вращается с частотой

.

Отсюда видим, что н.с. статора и ротора вращаются относительно статора в одну и ту же сторону с одной и той же частотой; следовательно, они неподвижны одна относительно другой.

Обратимся к рис. 3-31, где изображены статор и ротор вращающейся машины. Ее основное поле, синусоидально распределенное в воздушном зазоре, можно изобразить пространственным вектором , вращающимся с синхронной частотой ω1. При этом индукция в любой точке внутренней окружности статора определяется проекцией вектора  на линию, проведенную через центр и выбранную точку. 

Рис. 3-31. Пространственная диаграмма н.с. двигателя (sω1 + ω2 = ω1).

Пусть в рассматриваемый момент времени вектор  направлен по горизонтали, как показано на рис. 3-31. Такое же направление будет иметь пространственный вектор  н.с. создающей в воздушном зазоре основное поле с амплитудой . В этот момент времени в фазах обмоток статора и ротора, оси которых перпендикулярны к вектору , будут наводиться максимальные э.д.с.  . Направления  , найденные по правилу правой руки, одинаковы при s>0, так как в этом случае поле относительно обеих обмоток перемещается в одну и ту же сторону (против часовой стрелки).

Если бы роторная цепь имела только активное сопротивление, то максимум тока I2м в фазе обмотки ротора получался бы одновременно с максимумом э.д.с. E2sм в этой фазе. Но так как роторная цепь наряду с активным сопротивлением имеет индуктивное сопротивление рассеяния, то максимум тока I2м наступит позднее, чем максимум э.д.с. E2sм. В рассматриваемый момент времени максимальный ток I2м будет иметь место в фазе 2, сдвинутой относительно фазы 1 на угол ψ2 (в электрических радианах) в соответствии со сдвигом по фазе (во времени) на угол ψ2 э.д.с. и тока в обмотке ротора.

Так как амплитуда вращающейся н.с. совпадает с осью той фазы, ток которой имеет в данный момент времени максимальное значение (рис. 3-27), то пространственный вектор  н.с. роторной обмотки совпадает с осью фазы 2.

Результирующая н.с.. Следовательно, . Последнее равенство при известных  и  позволяет определить пространственный вектор  н.с. статора и ту фазу его обмотки, которая имеет максимальный ток .

На рис. 3-31 показаны векторы н.с. и только те фазы обмоток статора и ротора, в которых э.д.с. и токи в рассматриваемый момент времени имеют максимальные значения.

Значения  и соответствующего потока Ф, сцепляющегося с обмоткой статора, определяются в основном напряжением U1: поток Ф должен иметь такое значение, чтобы наведенная им э.д.с. E1 почти полностью уравновешивала напряжение U1. При увеличении скольжения, что вызывается возрастанием нагрузки на валу, увеличиваются ток I2 и F2, а это в свою очередь приводит к увеличению I1 и F1, так как н.с.  должна остаться почти неизменной, поскольку остается почти неизменным создаваемый ею поток Ф.

Приведение вращающейся машины к неподвижной работающей как трансформатор

Намагничивающая сила ротора при его вращении совместно с н.с. статора создает основное толе. Очевидно, что точно такое же поле будет создаваться в машине и при неподвижном роторе, если токи в его обмотке по величине и фазе (относительно э.д.с.) остаются теми же, что и при вращении.

На рис. 3-32 представлена векторная диаграмма роторной цепи при s>0, соответствующая уравнению напряжений (3-85). 

Рис. 3-32. Векторная диаграмма роторной цепи при s > 0.

Из этого уравнения находим:

.          (3-86)

Если числитель и знаменатель правой части равенства разделить на s, то получим тот же ток

,          (3-87)

где Е2 и х2 – э.д.с. и индуктивное сопротивление рассеяния роторной цепи при неподвижном роторе.

Таким образом, вместо вращающегося ротора можно рассматривать неподвижный ротор, но при этом необходимо считать активное сопротивление его цепи равным . В этом случае ток роторной цепи I2 остается тем же самым, что и при скольжении s, так же как и сдвиг его по фазе ψ2 относительно э.д.с. (рис. 3-32 и 3-33).

Рис. 3-33. Векторная диаграмма роторной цепи при неподвижном роторе.

Теперь мы можем перейти от вращающегося ротора к неподвижному (эквивалентному), взяв здесь только фазы статора и ротора, оси которых совпадают, и рассматривать работу машины как работу условного трансформатора, первичная (статорная) и вторичная (роторная) обмотки которого пронизываются одновременно одним и тем же главным потоком Ф (рис. 3-34). При этом необходимо, чтобы н.с. обмоток по амплитуде были равны F1 и F2 и чтобы эти н.с. по фазе (во времени) были сдвинуты на такой же угол, на который они были сдвинуты в пространстве при работе машины двигателем.

Уравнения напряжений для фаз статора и ротора можем написать так же, как для первичной и вторичной обмоток трансформатора. Уравнение напряжений роторной цепи (3-85) после деления его членов на s получает следующий вид:

.          (3-88)

Отсюда также видим, что при замене вращающейся машины неподвижной, когда она работает как трансформатор (рис. 3-34), нужно в ее роторной цепи иметь активное сопротивление .

Рис. 3-34. Фазы обмоток статора и ротора асинхронной машины, работающей как трансформатор.

Тогда временной сдвиг н.с. статорной и роторной обмоток такого трансформатора будет соответствовать пространственному сдвигу н.с. вращающейся машины и мы можем написать:

;          (3-89)

здесь  взято с учетом потерь в стали статора Pс1, и вследствие этого несколько отличается от  на диаграмме рис. 3-31, где для упрощения мы пренебрегали этими потерями (практически ). Согласно (3-59) перепишем уравнение (3-89) в следующем виде:

.          (3-90)

Разделим обе части этого равенства на . При этом получим:

,          (3-91)

где

          (3-92)

есть ток ротора, приведенный к обмотке статора.

Обратимся теперь к уравнению напряжений роторной цепи (3-88). Помножим его на  и два последних члена правой части еще на.

Тогда, учитывая формулы для э.д.с. (3-77) и (3-80) и для приведенного тока (3-92), получим:

,          (3-93)

где          (3-94)

– э.д.с. обмотки ротора, приведенная к обмотке статора;

          (3-95)

и

          (3-96)

– сопротивления обмотки ротора, приведенные к обмотке статора.

С учетом (3-92) и (3-94) те же соотношения между r2 и  и между х2 и  мы получили бы, исходя из равенств:

 и ;          (3-97)

Приведенные величины  и  были бы равны действительным величинам обмотки ротора, если бы она была выполнена с теми же числами фаз, витков в фазе, пазов на полюс и фазу и с тем же шагом, что и обмотка статора. В такой обмотке электрические потери, а также относительные падения напряжения согласно (3-97) должны остаться неизменными.

Электротехника