Электрические двигатели и генераторы

Электротехника
Электрические машины и трансформаторы
Определение фазных и линейных токов приемников
Электрическая машина
Принцип действия асинхронного двигателя
Трансформаторы

Векторная диаграмма трансформатора

Переходные процессы в трансформаторах
Трансформаторные устройства специального назначения
Холостой ход трансформатора
Опыт короткого замыкания
Трехобмоточный трансформатор
Измерительные трансформаторы.
Электрические двигатели и генераторы
Асинхронный генератор
Параметры асинхронной машины 
Регулирование скорости вращения

Однофазные асинхронные двигатели.

Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Несимметричная нагрузка трехфазного генератора
Однофазный синхронный генератор
Синхронный двигатель 
Синхронные машины заводов Советского Союза
Машины постоянного тока – генераторы и двигатели
Генератор с параллельным возбуждением
Электромашинные усилители
Электромашинные преобразователи тока
 

Параметры асинхронной машины 

Параметры рассмотренных схем замещения являются в то же время параметрами асинхронной машины. Они могут быть определены расчетным или опытным путем.

При определении их расчетным путем нужно иметь геометрические размеры машины (наружный и внутренний диаметры статора, то же для ротора, длину воздушного зазора между статором и ротором, их длины по оси, а также размеры пазов и зубцов статора и ротора) и ее обмоточные данные (числа витков, их средние длины, сечения проводников и шаги обмоток, числа пазов). Мы будем здесь рассматривать только основные методы расчета параметров, имея в виду установить их связь с геометрическими размерами машины и ее электромагнитными нагрузками.

Под последними понимаются индукции в отдельных участках магнитной цепи машины, линейная нагрузка (условная величина), А/см,

,          (3-143)

плотности тока для статорной и роторной обмоток:  и , А/мм2.

  

3-16. Параметры асинхронной машины часть 2

а) Ток холостого хода и сопротивление Z12.

 Сопротивление Z12 ветви намагничивания (рис. 3-48) найдем, определив реактивную Iср и активную Iса составляющие тока синхронизма Iс.

Реактивная составляющая Iср, которая может быть названа намагничивающим током, практически равна реактивной составляющей Iор тока холостого хода. Для ее определения нужно произвести расчет магнитной цепи машины, т. е. рассчитать н. с. , могущую создать поток Ф, необходимый для наведения э. д. с. .

Поток Ф находим по (3-77). По потоку Ф, зная сечения зубцов и ярм статора и ротора, определяем индукции в соответствующих участках магнитной цепи. Затем, пользуясь кривыми намагничивания для стали, из которой выполняется статор и ротор, находим для рассчитанных индукций напряженности поля и, умножая их на длины участков, находим магнитные напряжения этих участков.

Наибольшее магнитное напряжение приходится на воздушный зазор, максимальная индукция в котором

,          (3-144)

где  (кривая поля вследствие насыщения главным образом зубцов статора и ротора несколько отличается от синусоиды, поэтому вместо  берется ); l – длина статора по оси за вычетом радиальных вентиляционных каналов. Для нормальных машин (от 0,6 кВт и выше)  Гс.

Магнитное напряжение воздушного зазора

,          (3-145)

где  – коэффициент, учитывающий увеличение магнитного сопротивления воздушного зазора вследствие наличия пазов на статоре и роторе: его значение k = 1,1÷1,5 (при открытых пазах оно больше, чем при полузакрытых).

Магнитные напряжения стальных участков магнитной цепи при обычных насыщениях составляют в сумме примерно (0,20,5)F. Следовательно, мы можем написать:

          (3-146)

где kн = 1,2÷1,5 – коэффициент насыщения. Такие значения для kн получаются, если индукции имеют обычные значения для зубцов – 1400019000 Гс, для ярм – 1000015000 Гс.

Согласно (3-59) и (3-146) реактивная составляющая

          (3-147)

Разделив обе части равенства на I1н, получим относительное значение

          (3-148)

Если сюда подставить (3-145) и учесть (3-143), а также равенство , то получим:

          (3-149)

Уравнение (3-149) показывает, что относительное значение тока I0р зависит главным образом от, так как  для нормальных машин колеблется в сравнительно небольших пределах.

При рассмотрении круговой диаграммы асинхронной машины (§ 3-17) мы увидим, что cos1 двигателя зависит в основном от тока I0р. Поэтому для улучшения cos1 воздушный зазор  выбирается по возможности небольшим; при этом приходится считаться с необходимостью получить механически надежную машину, изготовление и установка которой не вызывают больших затруднений. Значения  для нормальных машин приведены в табл. 3-4.

Для тихоходных машин (при большом числе полюсов) величина  [см. (3-149)] больше, чем для быстроходных (при малом числе полюсов). Этим и объясняется то, что тихоходные машины имеют более низкие значения cos1.

Активная составляющая Iс.а тока синхронизма зависит главным образом от потерь в стали статора Pc1, вызванных основным полем, соответствующим главному потоку, и от электрических потерь   :

          (3-150)

Следовательно, ток синхронизма

          (3-151)

Теперь мы можем рассчитать Z12 = r12 + jx12:

          (3-152)

Указанные параметры целесообразно выразить в относительных единицах, приняв, так же как для трансформаторов (см. § 2-15), за базисную единицу сопротивлений . Тогда получим, д.е.:

          (3-153)

Для нормальных машин значения  и  колеблются в следующих пределах  = 0,5÷0,1 д.е. (уменьшается с увеличением Рн и 2p), = 4,5÷1,5 д.е. (уменьшается с увеличением 2р).

При определении тока холостого хода I0 нужно учесть еще его активную составляющую, соответствующую механическим потерям Рмех (на трение вращающихся частей о воздух, в подшипниках и щеток о контактные кольца, если они имеются), а также пульсационным и поверхностным потерям в зубцах ротора и статора Рс.д (при прохождении зубцов ротора под зубцами статора поле в них пульсирует с большой частотой, то же мы имеем для зубцов статора, кроме того, в сравнительно неглубоких поверхностных слоях зубцов ротора и статора получается неравномерное распределение поля из-за наличия пазов на противоположной части, изменяющееся при вращении ротора). Указанные потери покрываются за счет механической мощности, развиваемой ротором.

Таким образом, активная составляющая тока холостого хода

,          (3-154)

где , и ток холостого хода

.          (3-155)

Для нормальных машин в обычных случаях (2p = 2  10)

.          (3-156)

Рассмотрим вначале вопрос об устойчивости работы трехфазного асинхронного двигателя. Напишем уравнение вращающих моментов, действующих на ротор двигателя при изменении его скорости вращения

Схемы замещения Теория асинхронной машины основана на ее аналогии с трансформатором Необходимые величины и зависимости, характеризующие работу вращающейся машины, можно получить, заменив ее неподвижной машиной, работающей как трансформатор.

Круговая диаграмма асинхронной машины представляет собой геометрическое место концов вектора тока , изменяющегося при изменении скольжения s в пределах от + ∞ до -∞, если при этом напряжение на зажимах статора машины и все ее параметры сохраняют постоянные значения. Ее называют также диаграммой тока. Она дает наглядное представление о важных зависимостях между величинами, характеризующими работу асинхронной машины.

Рабочие характеристики двигателей

Электротехника