Электрические двигатели и генераторы

Электротехника
Электрические машины и трансформаторы
Определение фазных и линейных токов приемников
Электрическая машина
Принцип действия асинхронного двигателя
Трансформаторы

Векторная диаграмма трансформатора

Переходные процессы в трансформаторах
Трансформаторные устройства специального назначения
Холостой ход трансформатора
Опыт короткого замыкания
Трехобмоточный трансформатор
Измерительные трансформаторы.
Электрические двигатели и генераторы
Асинхронный генератор
Параметры асинхронной машины 
Регулирование скорости вращения

Однофазные асинхронные двигатели.

Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Несимметричная нагрузка трехфазного генератора
Однофазный синхронный генератор
Синхронный двигатель 
Синхронные машины заводов Советского Союза
Машины постоянного тока – генераторы и двигатели
Генератор с параллельным возбуждением
Электромашинные усилители
Электромашинные преобразователи тока
 

Работа при несимметричных напряжениях

Работа трехфазного двигателя даже при небольшой несимметрии напряжений на его зажимах может привести к недопустимому нагреванию его обмоток, если он имеет на валу номинальную нагрузку или близкую к ней.

Исследование такой работы производится при помощи метода симметричных составляющих. Заданную систему напряжений    мы должны заменить двумя симметричными системами: напряжениями прямой последовательности    и напряжениями обратной последовательности   . В обычных случаях заданная система напряжений не имеет составляющих нулевой последовательности  из-за отсутствия нулевого провода. Тогда определение U1 и U2 может быть произведено по заданным абсолютным значениям напряжений   , векторы которых при  = 0 образуют замкнутый треугольник.

Аналогично уравнениям для токов  и  (2-146) и (2-147) мы можем написать уравнения для  и :

          (3-187)

Согласно этим уравнениям на рис. 3-72 построена диаграмма для определения  и , из которой мы находим не только абсолютные значения напряжений  и , но и взаимный сдвиг их по фазе.

Рис. 3-72. Определение  и  при  = 0.

Критерием для оценки несимметрии напряжений служит отношение , которое иногда называют коэффициентом несимметрии. Значения  и  определяются по рис. 3-72 или аналитически. При аналитическом определении  и  надо заданные напряжения расположить в следующем порядке: Ua > Ub > Uc (в частном случае два напряжения из трех могут быть равны между собой). Предварительно находим:

; .

Далее рассчитываем:

; .

После этого получим:

;

и отсюда модули симметричных составляющих:

;

.

При симметричных обмотках статора и ротора мы можем считать, что обе системы напряжений U1 и U2, действуют независимо одна от другой При U1 > U2 ротор будет вращаться в сторону вращения поля, соответствующего напряжениям прямой последовательности U1. Будем это поле называть прямо вращающимся или прямым.

По отношению к напряжениям U1 машина будет работать в режиме двигателя со скольжением  По круговой диаграмме или расчетным путем, как указывалось ранее, мы можем найти токи статора и ротора I1, и  вращающий момент М при любом скольжении s. Токи I1, вызванные напряжениями U1, являются токами прямой последовательности.

Поле, соответствующее напряжениям обратной последовательности U2 будет вращаться против вращения ротора. Будем его называть обратно вращающимся или обратным. По отношению к напряжениям U2 машина будет работать в режиме тормоза со скольжением

.

Токи статора, вызванные напряжениями U2, являются токами обратной последовательности. Обозначим их через I12. Токи , наведенные в обмотке ротора обратным полем, будут иметь частоту (2 – s)f1 При малом s эта частота почти в 2 раза больше частоты тока статора.

Токи I12 и  можно определить по упрощенной схеме замещения, представленной на рис 3-73.

Рис. 3-73. Приближенная схема для определения тока обратной последовательности.

Здесь мы пренебрегаем током синхронизма и принимаем с1 = 1, что допустимо при U2  U1. Сопротивления  и  являются сопротивлениями роторной обмотки, приведенными к статорной обмотке и рассчитанными с учетом вытеснения тока. Вытеснение тока здесь необходимо учитывать, так как частота тока ротора почти равна 2f1. Для двигателей с глубокими пазами и с двойной клеткой на роторе  может быть больше  (рассчитанного без учёта вытеснения тока) в 5-6 раз. Для фазного ротора, имеющего стержневую двухслойную обмотку при высоте стержней 1 см и больше, также получается заметное увеличение  по сравнению с .

Сопротивление схемы рис. 3-73 приблизительно равно сопротивлению короткого замыкания zк; следовательно, приближенно можем написать

,          (3-188)

где  – ток короткого замыкания при напряжении U1н. Ранее указывалось, что для нормальных двигателей , поэтому, учитывая (3-188), получим:

.          (3-189)

Из (3-189) следует, что ток обратной последовательности может иметь большое значение: например, даже при  токи I12 и  будут составлять 20  30% номинального тока I1н.

Тормозящий момент М2, соответствующий работе тормозом при U2, в обычных случаях несимметрии напряжений мал и им можно пренебречь Действительно, момент от обратного поля ; момент от прямого поля , следовательно

.

Мы видим, что при  когда , и при обычных скольжениях s = 0,02  0,05, соответствующих номинальной нагрузке на валу, момент М2 не превышает в худшем случае 0,02 М.

Таким образом, ухудшение условий работы двигателя при несимметрии напряжений на его зажимах получается в основном из-за увеличения электрических потерь в его обмотках. Потери в роторной обмотке увеличиваются на , (так как частоты токов  и  сильно отличаются одна от другой, и поэтому мы можем считать, что общие потери в роторной обмотке равны . Общие потери в статорной обмотке увеличиваются на  (так как из общих уравнений метода симметричных составляющих следует, что электрические потери в трехфазной обмотке при наличии в ней токов прямой и обратной последовательностей равны ).

Приходится также считаться с тем, что в наихудшем случае в одной из фаз токи прямой и обратной последовательностей складывается арифметически (рис. 3-74). Нагревание ее в этом случае может быть чрезмерным.

Рис. 3-74. Определение токов фаз по их симметричным составляющим.

Отметим здесь, что асинхронный двигатель при его работе вхолостую или с нагрузкой создает выравнивающее действие на напряжения сети, к которой он подключен, т. е. уменьшает их несимметрию. Объясняется это тем, что распределение токов по фазам сети и обмотки статора будет соответствовать напряжениям фаз: больший ток будет поступать в ту фазу обмотки статора, к которой приложено большее напряжение. Выравнивающее действие трехфазного асинхронного двигателя на напряжения сети будет тем больше, чем меньше zк двигателя.

Электротехника