Электрические двигатели и генераторы

Электротехника
Электрические машины и трансформаторы
Определение фазных и линейных токов приемников
Электрическая машина
Принцип действия асинхронного двигателя
Трансформаторы

Векторная диаграмма трансформатора

Переходные процессы в трансформаторах
Трансформаторные устройства специального назначения
Холостой ход трансформатора
Опыт короткого замыкания
Трехобмоточный трансформатор
Измерительные трансформаторы.
Электрические двигатели и генераторы
Асинхронный генератор
Параметры асинхронной машины 
Регулирование скорости вращения

Однофазные асинхронные двигатели.

Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Несимметричная нагрузка трехфазного генератора
Однофазный синхронный генератор
Синхронный двигатель 
Синхронные машины заводов Советского Союза
Машины постоянного тока – генераторы и двигатели
Генератор с параллельным возбуждением
Электромашинные усилители
Электромашинные преобразователи тока
 

Характеристики и векторные диаграммы

При исследовании синхронных генераторов, так же как и при исследовании других электрических машин, обращаются к их характеристикам, т. е. к кривым, определяющим зависимости между величинами, характеризующими рабочие режимы машины.

Обычно синхронные генераторы работают с постоянной частотой вращения, что обусловлено необходимостью поддерживать постоянной частоту тока. Поэтому в дальнейшем мы будем рассматривать характеристики, которые получаются при постоянной частоте вращения.

Одной из важнейших характеристик является рассмотренная ранее характеристика холостого хода. Она влияет на форму почти всех других кривых синхронной машины, характеризующих ее работу при нагрузке.

Характеристики генератора могут быть сняты опытным путем. Их также можно построить по характеристике холостого хода и параметрам машины, полученным расчетным или опытным путем. Такое построение позволяет выявить влияние различных параметров машины на ее характеристики. Оно будет показано в дальнейшем. Одновременно с этим будут рассмотрены способы опытного определения параметров машины.

а) Характеристика короткого замыкания.

 Характеристика короткого замыкания Iк = f(Iв) при U = 0 = const представлена на рис. 4-34.

Рис. 4-34. Характеристика короткого замыкания и ее построение.

Здесь имеется в виду установившийся ток короткого замыкания Iк, т. е. ток, значение которого длительно держится постоянным.

При снятии этой характеристики опытным путем используются схемы, приведенные на рис. 4-35,а и б.

Рис. 4-35. Схемы для опытов короткого замыкания.

Для схемы на рис. 4-35,а необходимо иметь три одинаковых амперметра. Обычно опыт проводится при схеме на рис. 4-35,б. Некоторая несимметричность отдельных цепей в данном случае допустима, так как сопротивление амперметра значительно меньше сопротивления отдельных фаз обмотки.

Характеристика короткого замыкания, как увидим из построения ее расчетным путем, должна идти в виде прямой линии.

Обратимся к векторным диаграммам короткозамкнутого генератора

На рис 4-36,а представлена диаграмма явнополюсного генератора, на которой:

; ; ; ;

; ; .

Рис. 4-36. Диаграммы короткозамкнутого генератора.
а – явнополюсного; б–неявнополюсного

Так как в обычных, случаях , то можем написать: . Следовательно, по характеристикам холостого хода и короткого замыкания (рис. 4-34) можно определить хd:

.          (4-31)

То же самое получаем для неявнополюсного генератора (рис. 4-36,б и 4-34).

Приведенное соотношение дает значение xd для ненасыщенной машины, если э.д.с.  берется по прямолинейной части характеристики холостого хода или по ее продолжению. Если характеристики построены в относительных единицах, то, очевидно, и сопротивление xd получится в относительных единицах.

При помощи характеристики холостого хода и короткого замыкания можно также определить продольную н.с. реакции якоря Fad, если известна величина хσ. Для этого нужно на характеристике холостого хода отложить , тогда  даст результирующую н.с. по продольной оси, а  – продольную н.с. реакции якоря, равную Fad = kdFa (рис. 4-34).

При этих построениях мы пренебрегаем активным падением напряжения. В противном случае надо было бы взять  равным Izσ, где . Но обычно хσ во много раз больше rа , поэтому можно вместо zσ брать хσ.

На рис. 4-35,б представлена диаграмма неявнополюсного короткозамкнутого генератора. Сопоставляя ее с рис. 4-34, можно установить, что для неявнополюсных машин отрезок  практически равен н.с. реакции якоря  (приведенной к н.с. обмотки возбуждения).

Теперь рассмотрим, как производится построение характеристики короткого замыкания по расчетным данным.

Отложим на характеристике холостого хода (рис. 4-34) отрезок  (или точнее, равный Iкzσ), затем от точки D на оси абсцисс отложим отрезок , равный для явнополюсной машины Fad = kdFa, а для неявнополюсной машины равный . Тогда точка B1 дает точку характеристики короткого замыкания для тока /к, для которого определялись падение напряжения Iкxσ и н.с. Fad или . Пока точка С лежит на прямолинейной части характеристики холостого хода, отрезки  пропорциональные току Iк, будут изменяться пропорционально токам возбуждения   и т. д., и, следовательно, характеристика короткого замыкания изобразится прямой линией. Поэтому для ее построения достаточно найти одну точку, например В1, и провести прямую через точку 0 и найденную точку В1.

Для очень больших значений тока якоря, при которых точка С попадает за колено характеристики холостого хода, характеристика короткого замыкания будет загибаться в сторону оси абсцисс. Однако с такими значениями установившегося тока короткого замыкания на практике иметь дело не приходится.

Прямоугольный треугольник DC1A1 на рис. 4-34, у которого один катет равен Ixσ, а другой – н.с. реакции якоря Fad (или ), называется реактивным треугольником (также треугольником Потье). Стороны его могут быть определены опытным путем, как показано в следующем пункте.

Электротехника